## Participation Assignment CHEM 1100-General Chemistry II

Name: #7

Section: 31, TR Due Date: Thursday 2/6/2020

Half-Life:

First Order Second Order

$$\ln[A]_{t} = -kt + \ln[A]_{0}$$

$$\frac{1}{[A]_{t}} = kt + \frac{1}{[A]_{0}}$$

1. In a dilute sodium hydroxide solution, the decomposition of hydrogen peroxide is a first order process:

$$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$

At 20 °C, the rate constant for this process is  $1.8 \times 10^{-5}$  1/s. If the concentration of hydrogen peroxide is initially 0.300 M, how many hours will it take until the concentration drops to 0.150 M?

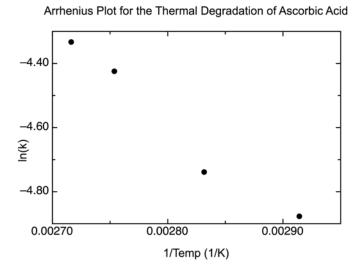
Rate constant: McMurry, J., Fay, R., Chemistry, 5th ed., Pearson Education, 2008, p452.

2. The decomposition of hydrogen iodide is a second order reaction:

$$2HI(g) \rightarrow H_2(g) + I_2(g)$$

The rate constant for this process is  $5.13 \times 10^{-4} \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$  at  $410 \,^{\circ}\mathrm{C}$ . If the initial concentration of hydrogen iodide is  $0.400 \,\mathrm{M}$ , how many hours will it take until the concentration is  $0.200 \,\mathrm{M}$ ?

Rate constant: McMurry, J., Fay, R., Chemistry, 5th ed., Pearson Education, 2008, p460 (units for the rate constant modified).


Arrhenius equation:  $k = Ae^{-Ea/RT}$ 

$$ln(k) = ln(A) + ln(e^{-Ea/RT})$$

3. Determine the activation energy, in kJ/mol, for the thermal degradation of ascorbic acid in rose hips:

| Temp(°C) | 1/T (1/K) | k (1/min) | ln(k)  |
|----------|-----------|-----------|--------|
| 70       | 0.002914  | 0.00762   | -4.877 |
| 80       | 0.002832  | 0.00875   | -4.739 |
| 90       | 0.002754  | 0.01198   | -4.425 |
| 95       | 0.002716  | 0.01313   | -4.333 |

Karhan, M., Aksu, M., Tetik, N., Turhan, I., "Kinetic Modeling of Anaerobic Thermal Degradation of Ascorbic Acid in Rose Hip (Rosa Canina L) Pulp", Journal of Food Quality, 2004, 27, p311.

