## Exam #2 Objectives



### **CHEM 1100 General Chemistry II**

#### **Text Reading**

Chapter 14: sections 1-6

#### **Homework Assignment**

McGraw-Hill LearnSmart and Connect online assignments.

#### **Concepts**

- 1. Discuss the factors that can influence the rate of a reaction.
- 2. Demonstrate the ability to relate the rate of reaction between all the reactants and products.
- 3. Using a given rate law, calculate the rate of reaction.
- 4. Using the method of initial rates on experimental data, determine the exponents and write a rate law for a given chemical reaction.
- 5. Demonstrate the ability to determine the proper units for a rate constant based on the rate law.
- 6. Demonstrate the ability to write the relationship between concentration and time for zero, first, and second order reactions.
- 7. Graphically determine the order of a reaction.
- 8. Discuss collision and transition-state theory.
- 9. Graphically show the relationship between the potential energy of the reactants and products, the heat of reaction, and the activation energy for endothermic and exothermic reactions using transition state theory.
- 10. Demonstrate the ability to use the Arrhenius equation to show the relationship between activation energy, temperature, and the rate constant.
- 11. Given information about different sets of elementary processes, determine which could be a possible reaction mechanism for a given chemical reaction.
- 12. Demonstrate a working vocabulary of the following terms:

| Arrhenius equation                                          | first order                                                | reaction mechanism         |
|-------------------------------------------------------------|------------------------------------------------------------|----------------------------|
| activation energy                                           | half-life                                                  | second order               |
| bimolecular                                                 | kinetics                                                   | termolecular               |
| catalyst                                                    | order                                                      | transition state theory    |
| collision theory<br>$E_a$<br>elementary process<br>exponent | rate<br>rate constant<br>rate-determining step<br>rate law | unimolecular<br>zero order |

# CHEM 1100 General Chemistry II

13. Memorize and demonstrate the ability to use the following equation(s):

| Zero Order:   | rate = k        | $\left[A\right]_{t} = -kt + \left[A\right]_{0}$                    | $t_{1/2} = \frac{\left[A\right]_0}{2k}$ |
|---------------|-----------------|--------------------------------------------------------------------|-----------------------------------------|
| First Order:  | rate = k[A]     | $\ln[A]_t = -kt + \ln[A]_0$                                        | $t_{1/2} = \frac{\ln 2}{k}$             |
| Second Order: | $rate = k[A]^2$ | $\frac{1}{\left[A\right]_{t}} = kt + \frac{1}{\left[A\right]_{0}}$ | $t_{1/2} = \frac{1}{k[A]_0}$            |

14. Recognize and demonstrate the ability to use the following equation(s) (you will be given these equations):

$$k = Ae^{-E_a/RT} \qquad \ln k = \left(\frac{-E_a}{R}\right) \left(\frac{1}{T}\right) + \ln A$$
$$\ln\left(\frac{k_1}{k_2}\right) = \left(\frac{E_a}{R}\right) \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$